
A shim based approach to 
authentication using CAS.

(It works for authorization too.)

Erik Klavon

erik@ack.berkeley.edu

2008-10-08



My authentication needs
• Home grown web applications served by Apache 2 and 

written in perl (some use AWS, others basic auth).
• Third party web applications with different authentication 

mechanisms.
– MoinMoin (Python)
– Nagios (C)
– Cacti (php)
– Request Tracker (perl)

• Static web pages protected by basic authentication.
• The ideal solution should work for all cases.



Apache 2 authentication handler



Use an authentication handler to 
implement CAS authentication.

• Requirements:
– Track user sessions. (Use a cookie and keep state in the server).
– When an unauthenticated user makes a request, redirect them to 

the CAS login page. (Apache 2 handlers support redirection.)
– Validate CAS authentication when present and user does not 

have a session. (This covers a return redirect after CAS login as 
well as single sign on.)

– Identify the authenticated user to web applications protected by
the handler. (Use REMOTE_USER environment variable.)

– Selectively enforce authentication with the granularity of a URL. 
(Use Apache 2 configuration directives to control where 
authentication is required and where it is not.)



Use existing solutions
• Apache2::AuthCAS (mod_perl) and 

mod_auth_cas (C) both meet these 
requirements.

• Both can store the user identity returned from 
CAS (for UCB the CalNet directory UID) in the 
REMOTE_USER environment variable.

• I started out using Apache2::AuthCAS and am 
evaluating mod_auth_cas.

• Apache2::AuthCAS known to work with C, php, 
python and perl web apps as well as static 
content. mod_auth_cas should be similar; it 
works fine with perl.



Testing CAS Integration
• Cases

– User authenticates for the first time
– Single sign on
– CAS session times out
– Shim/App session times out
– Both CAS and Shim/App sessions time out

• For each case, how are POSTs and GETs
handled?

• You may want to avoid exposing user submitted 
data to the CAS servers when using GET. 



Apache2::AuthCAS vs. 
mod_auth_cas

NoYes (untested)Supports proxy 
functions

NoNoHandles POST 
w/o data loss 
across authen+

YesNoValidate cert of 
CAS server during 
auth validation

Client cookie and 
local filesystem

Client cookie and 
SQL database

Session State

mod_auth_casAuthCAS



Apache2::AuthCAS example
PerlLoadModule Apache2::Request
PerlLoadModule Apache2::AuthCAS::Configuration
PerlLoadModule Apache2::AuthCAS

<Location "/usr/www/sec-cgi-bin/hello_world/">
AuthType Apache2::AuthCAS

AuthName "CAS"
PerlAuthenHandler Apache2::AuthCAS->authenticate
require valid-user

CASDbDriver "Pg"
CASDbDataSource "dbname=<db>;host=<host>;port=<port>"
CASDbUser “<username>"
CASDbPass “<passwd>"

CASHost "auth.berkeley.edu“
CASServiceValidateUri "/cas/serviceValidate"

CASPretendBasicAuth 1
</Location>



mod_auth_cas example
CASVersion 2
CASLoginURL https://auth.Berkeley.EDU/cas/login
CASValidateURL https://auth.Berkeley.EDU/cas/serviceValidate
CASCookieDomain net.berkeley.edu
CASCertificatePath /usr/local/ist/etc/ssl/certs/auth.pem

<Location "/usr/www/sec-cgi-bin/hello_world/">
AuthType CAS
require valid-user

</Location>



Obtaining user identity example
#!/usr/bin/perl

use CGI;

my $cgi = new CGI();
my $calnetuid = $cgi->remote_user();

if (!defined($calnetuid) || ($calnetuid eq ‘’)) {
# need to handle auth error case here; display
# error page to user.

}



Use an authorization handler to 
implement authorization



Apache 2 authorization handlers
• Numerous versions exist.
• I wrote my own in mod_perl to meet requirements of our 

environment.
– Role based authorization against Unix account (group) data.
– Per user authorization by CalNet UID.
– Rewrite REMOTE_USER variable from CalNet UID to some other 

identifier on a per application basis when needed.
– I may add the ability to perform authorization by applying criteria against 

CalNet directory info.
– mod_authz_ldap may work for CalNet directory authorization. 

• This works really well for static content and many web applications.
• Depending on the situation, you may want to perform some 

authorization in your application rather than in the web server.



Authorization example
PerlLoadModule IST::Apache2::AuthzLDAP::Configuration
PerlLoadModule IST::Apache2::AuthzLDAP

<Location "/usr/www/sec-cgi-bin/hello_world/">
PerlAuthzHandler IST::Apache2::AuthzLDAP->handler
AuthzLDAPLDAPServer “<server1>,<server2>“
AuthzLDAPLDAPBind “<bind dn>“
AuthzLDAPLDAPPasswd “<bindpasswd>”
AuthzLDAPLogLevel "4“
AuthzLDAPGroup “staff,wheel“
AuthzLDAPCalNetUID “106466“
AuthzLDAPRemoteUserType "FirstLast"

</Location>



Conclusion
• Authentication and authorization handlers are shims that selectively 

modify Apache’s behavior.
• You can download an authentication handler to implement CAS 

authentication for static content and most web applications. No 
coding required!

• You can download or write your own authorization handler to 
authorize access to static content and web applications.

• These are configure/write once solutions. All the work is taken care 
of in the web server; your applications do not need to be concerned 
with authentication or authorization (where applicable).

• Centralizing authentication and authorization functions in the web 
server makes it easier to develop and deploy work arounds when 
CAS or authorization data are unavailable.

• Something similar may be possible for IIS.


