A shim based approach to
authentication using CAS.

(It works for authorization too.)

Erik Klavon
erik@ack.berkeley.edu
2008-10-08

My authentication needs

Home grown web applications served by Apache 2 and
written in perl (some use AWS, others basic auth).

Third party web applications with different authentication
mechanisms.

— MoinMoin (Python)

— Nagios (C)

— Cacti (php)

— Request Tracker (perl)

Static web pages protected by basic authentication.
The ideal solution should work for all cases.

Apache 2 authentication handler

WWW
browser

request
Apache 2

parse request

authentication handler

process request

Use an authentication handler to
Implement CAS authentication.

 Requirements:

— Track user sessions. (Use a cookie and keep state in the server).

— When an unauthenticated user makes a request, redirect them to
the CAS login page. (Apache 2 handlers support redirection.)

— Validate CAS authentication when present and user does not
have a session. (This covers a return redirect after CAS login as
well as single sign on.)

— ldentify the authenticated user to web applications protected by
the handler. (Use REMOTE_USER environment variable.)

— Selectively enforce authentication with the granularity of a URL.
(Use Apache 2 configuration directives to control where
authentication is required and where it is not.)

Use existing solutions

Apache2::AuthCAS (mod_perl) and
mod_auth cas (C) both meet these
requirements.

Both can store the user identity returned from
CAS (for UCB the CalNet directory UID) in the
REMOTE_USER environment variable.

| started out using Apache2::AuthCAS and am
evaluating mod_auth_cas.

Apache2::AuthCAS known to work with C, php,
python and perl web apps as well as static
content. mod_auth cas should be similar; it
works fine with perl.

Testing CAS Integration

e Cases
— User authenticates for the first time
— Single sign on
— CAS session times out
— Shim/App session times out
— Both CAS and Shim/App sessions time out

e For each case, how are POSTs and GETs
handled?

 You may want to avoid exposing user submitted
data to the CAS servers when using GET.

Apache2:.:AuthCAS vs.
mod auth cas

AuthCAS

mod_auth_cas

Session State

Client cookie and
SQL database

Client cookie and
local filesystem

Validate cert of
CAS server during
auth validation

NO

Yes

Handles POST
w/o data loss
across authen+

NO

NO

Supports proxy
functions

Yes (untested)

NO

Apache2::AuthCAS example

PerlLoadModule Apache2::Request
PerlLoadModule Apache2::AuthCAS: :Configuration
PerlLoadModule Apache2::AuthCAS

<Location "/usr/www/sec-cgi-bin/hello world/">
AuthType Apache2::AuthCAS

AuthName "CAS"
PerlAuthenHandler Apache2::AuthCAS->authenticate
require valid-user

CASDbDriver "Pg"

CASDbDataSource "dbname=<db>;host=<host>;port=<port>"
CASDbUser “<username>"

CASDDbPass “<passwd>"

CASHost "auth.berkeley.edu”
CASServiceValidateUri "/cas/serviceValidate"
CASPretendBasicAuth 1

</Location>

mod_auth_cas example

CASVersion 2

CASLoginURL https://auth.Berkeley.EDU/cas/login
CASValidateURL https://auth.Berkeley.EDU/cas/serviceValidate
CASCookieDomain net.berkeley.edu

CASCertificatePath /usr/local/ist/etc/ssl/certs/auth.pem

<Location "/usr/www/sec-cgi-bin/hello_world/">
AuthType CAS
require valid-user

</Location>

Obtaining user identity example

#!/usr/bin/perl
use CGI;

my $cgi = new CGI();
my $calnetuid = $cgi->remote user();

if (!defined($calnetuid) || ($calnetuid eq ‘’)) {
need to handle auth error case here; display
error page to user.

Use an authorization handler to
Implement authorization

WWW
browser

request
Apache 2

parse request

authentication handler

authorization handler

process request

Apache 2 authorization handlers

e Numerous versions exist.

* | wrote my own in mod_perl to meet requirements of our
environment.

Role based authorization against Unix account (group) data.
Per user authorization by CalNet UID.

Rewrite REMOTE_USER variable from CalNet UID to some other
identifier on a per application basis when needed.

| may add the ability to perform authorization by applying criteria against
CalNet directory info.

mod_authz_Idap may work for CalNet directory authorization.

« This works really well for static content and many web applications.

* Depending on the situation, you may want to perform some
authorization in your application rather than in the web server.

Authorization example

PerlLoadModule IST::Apache2::AuthzLDAP::Configuration
PerlLoadModule IST::Apache2::AuthzLDAP

<Location "/usr/www/sec-cgi-bin/hello world/">
PerlAuthzHandler IST::Apache2::AuthzLDAP->handler
AuthzLDAPLDAPServer “<serveri>,<server2>"
AuthzLDAPLDAPBind “<bind dn>“
AuthzLDAPLDAPPasswd “<bindpasswd>”
AuthzLDAPLogLevel "4
AuthzLDAPGroup “staff,wheel”
AuthzLDAPCalNetUID “106466“
AuthzLDAPRemoteUserType "FirstLast"

</Location>

Conclusion

Authentication and authorization handlers are shims that selectively
modify Apache’s behavior.

You can download an authentication handler to implement CAS
authentication for static content and most web applications. No
coding required!

You can download or write your own authorization handler to
authorize access to static content and web applications.

These are configure/write once solutions. All the work is taken care
of in the web server; your applications do not need to be concerned
with authentication or authorization (where applicable).

Centralizing authentication and authorization functions in the web
server makes it easier to develop and deploy work arounds when
CAS or authorization data are unavailable.

Something similar may be possible for IIS.

